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Outline
• HDAC vs FSCC
• Two types of optical cells with fused silica windows for 

the study of geologic fluids (C-O-H-N-S-salts) at P-T 
conditions up to 100 MPa and 600 ºC:
– (1) High pressure optical cell ( HPOC) for samples 

with known compositions and adjustable pressures 
for in-situ experiments 

– (2) Fused silica capillary capsule (FSCC) for samples 
with mostly uncertain composition and pressure, 
and suitable for long term (days or weeks) 
experiments 

• Constructions of these optical cells and applications
• Summary
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Raman study of 
synthetic subduction-zone fluids

(KAlSi3O8-H2O) system 

SCF: supercritical fluid
F: aqueous fluid
Sa: sanidine
M: hydrous melt
Ms: muscovite
C: corundum
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Sanidine
KAlSi3O8

Muscovite
KAl2(Si3Al)O10(OH)2

Some minerals
in the system:

KAlSi3O8 - H2O

Corundum
Al2O3
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Moleculea Frequency (cm-1)b Motionj

H4SiO4 (Mo) 783 (calc)c, 785 (exp)d, 788 (calc)e n(Si-O)

KH3SiO4 (Mo) 748 (calc)f n(Si-O)

H6Si2O7 (D) 620 (calc)e, 631 (calc)c, 638 (calc)g n(Si-O), d(Si-O-Si)

H6SiAlO7
1- (D) 585 (calc)g n(Tk-O), d(Si-O-Al)

H4SiAlO7
3- (D) 574 (exp)d n(T-O), d(Si-O-Al)

H6Si3O9 (3R) 629 (calc)e n(Si-O-Si)
H6Si2AlO9

1- (3R) 574 (calc)h n(T-O-T)
H8Si4O12 (4R) 490 (calc)h n(Si-O-Si)

H8Si3AlO12
1- (4R) 488 (calc)h n(T-O-T)

Al(OH)4
1- 616 (calc)i, 620 (exp)d n(Al-O)

KAl(OH)4 619 (calc)f n(Al-O)
KH2AlO3 691 (calc)f n(Al-O)
Al(OH)3H2O 438 (calc)i n(Al-OH2)

KOH 361 (calc)f d(K-O-H)
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Synthetic Fluid Inclusions
in Quartz 

(Sterner & Bodnar, 1984)

• Pre-fractured quartz core or prism, together with 
sample fluid and silica powder, were sealed in a 
precious-metal capsule.

• The fractures in quartz were healed at a fixed P-T 
condition in a pressure vessel and captured sample 
fluid as inclusions. 

• To heal the fractures requires high T (> 300 ºC) 
and time (days and weeks).      



Lin (2005)

• Synthesized CH4-H2O fluid 
inclusions in quartz in Pt 
capsules at 300 to 700 C and 
1, 3, and 5 kbars

• Al4C3 +12 H2O = 3 CH4 + 
4 Al(OH)3

• All inclusions formed at and 
above 600 C contain CO2

CH4+ H2O = CO2 + H2



Polymicro Technologies, LLC
(www.polymicro.com). 

Fused Silica Capillary Tube

Square-sectioned tubeRound-sectioned tube



HPOC
Chou et al. (2005)

GlandSleeve

Valve Fused silicaHP tube



Chou, Burruss, Lu (2005)
Chapter 24 in

Advances in High-Pressure Technology
for Geophysical Applications





Raman  Spectra  for  CH4 in  
Different  Phases 
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Thieu et al. (2000)

Hansen et al. (2001)

Thieu (1998)

Seitz et al. (1996)
Fabre & Couty (1986)

Hester (2002)

Jager (1998)  

Lin (2005) 
This study

Lu, Chou, Burruss, Song 
GCA (2007) 

no = p.p. near 0 P
n = p.p. at high P

P (MPa) = - 0.0148 D5 - 0.1791 D4

- 0.8479 D3 - 1.765 D2 - 5.876 D



What Are Gas Hydrates ?
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Methane, Ethane, 
Carbon dioxide, etc.

Cavity  Types             Hydrate Structure      ‘Guest’ Molecules

Propane, Iso-butane, etc.

Methane + Neohexane,
Methane + Cycloheptane, 

etc.



Chou et al. (2000) PNAS, v. 97, 13484-13487
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[X(CH4)] = 1.0563 [A(CH4)aq/A(H2O)]
r2 = 0.9962 

Lu, Chou, Burruss, Yang (2006)
Applied Spectroscopy



115 minutes after being pressurized by CH4 at 24.47 MPa

Y = 0.70 mm

Y = 4.12 mm

[X(CH4)] = 1.0563 [A(CH4)aq/A(H2O)]

Ymax. = 12.2 mm

Diffusion of Methane in Water



D = 1.66 x 10–9 m2s-1
Lu, Chou, Burruss, & Yang (J. Applied Spectroscopy; 2006)



Keith Kvenvolden



Davie et al. (2004)

This study
Lu, Chou, Burruss

GCA (2008)

Yang et al. (2001)

Servio & 
Englezos (2002)

Kim et al. (2003)

Previous studies

CH4 conc. 
in equilib. with 

methane hydrate



Lu, Chou, & Burruss
(GCA, 2008)



Growth of methane hydrate 
in 2 wt% Na2SO4 aqueous solution

near room temperature

T dropped from ~23oC 
to ~22oC in one hour





CH4 tank

Vacuum line

Immersed in liquid N2

Sample loading system
for a capillary capsule





~ 11 mm



Methane Hydrate

Smackover Oil
(50 μm ID)

Room T
(50 μm ID)

H2O CO2 (L) CO2 (V)
CO2-H2O



m

Methane hydrate
at 22oC

~ 40 MPa

Chou, Song, Burruss (GCA, 2008)



Cracking of octadecane (C18H38) with various 
densities at 350, 375, and 400 
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• Our understanding of the reaction pathways and 
decomposition of organic compounds in the 

presence of water is limited.  
• Raman spectroscopic analysis for the following 

reactions at 206 °C for 41 hours:

– CH4 + H2O = CH3OH + H2 

– C2H6 + H2O = C2H5OH + H2

– C2H6 + 2 H2O = CH3CO2H + 3 H2





Shang et al. (GCA, 2009)

(1963)
(1941)

r2 = 0.99991



Modified from: Williamson & Rimstidt (1992)
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TSR by H2





300 oC
107 MPa
10 days

300 oC (v)



In-situ Raman
in USGS heating stage

TSR by CH4



In-situ Raman
in USGS heating stage TSR by CH4



Stretching frenquency of 
water dissolved in CO2

at 32 ºC
as a function of 

CO2 density

Berkesi et al.
(2009)



Uranyl  chloride complexes in LiCl solution (1.5 molal) 
at 200 ºC at vapor satrated (Dargent et al.,  2012)
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Polycarbonate Bisphenol A

Hydrolysis of Polycarbonate 
in sub-critical water (280 oC)

Pan, Chou & Burruss (Green Chem., 2009)
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INSTEC Heating-Cooling Stage

FSCC (0.1 mm ID)

CO2



Linkam 500
Capillary Pressure Stage



7:   Capillary sample holder
8:   Capillary movement mechanism
9:   Silver block heater & cover
10: Pt sensor protection plate
11: 16 mm glass cover slip

Linkam 500
Capillary Pressure Stage



1: Qtz sample carrier for FSCC
(25 mm movement)

2: Silver cover

Linkam 500
Capillary Pressure Stage



Error band over 30 mm of movement



Summary

• Optical cells with fused silica windows, such as HPOC 
and FSCC, were designed for experiments at pressures 
up to 100 MPa and temperatures up to 600 ºC, such as 
the P-T conditions of sedimentary basins, 
hydrothermal systems, and low-grade metamorphism.

• These types of cells are particularly suitable for the 
study of organic compounds and also for the systems 
containing S. 



Summary
• When compared with the conventional synthetic fluid 

inclusion method, in which fluid inclusions were 
formed by healing fractures in quartz chips at 
elevated P-T conditions, the new FSCC method has 
the following advantages: (1) simple; (2) large and 
uniform inclusions can be formed; (3) suitable for the 
studies of organic material and/or S with/without 
water, and (5) allowing redox control when needed, 
especially for TSR experiments.

• The HPOC & FSCC have a great potential for 
studying geologic fluids at various P-T conditions, as 
demonstrated by many examples.


