Optical cells with fused silica windows for the study of geological fluids

I-Ming Chou

U.S. Geological Survey Reston, Virginia USA

Outline

- HDAC vs FSCC
- Two types of optical cells with fused silica windows for the study of geologic fluids (C-O-H-N-S-salts) at *P-T* conditions up to 100 MPa and 600 °C:
 - (1) High pressure optical cell (HPOC) for samples with known compositions and adjustable pressures for in-situ experiments
 - (2) Fused silica capillary capsule (FSCC) for samples with mostly uncertain composition and pressure, and suitable for long term (days or weeks) experiments
- Constructions of these optical cells and applications
- Summary

HDAC type V

Kenji Mibe Earthquake <u>Research Institute</u>

University of Tokyo, Japan

SCF: supercritical fluid F: aqueous fluid Sa: sanidine M: hydrous melt Ms: muscovite C: corundum Raman study of synthetic subduction-zone fluids (KAlSi₃O₈-H₂O) system

Mibe, Chou, & Bassett JGR, 113 (2008)

Some minerals in the system:

KAISi₃O₈ - H₂O

 AI_2O_3

Molecule ^a	Frequency (cm ⁻¹) ^b	Motion ^j
H ₄ SiO ₄ (Mo)	783 (calc) ^c , 785 (exp) ^d , 788 (calc) ^e	n(Si-O)
KH ₃ SiO ₄ (Mo)	748 (calc) ^f	n(Si-O)
$H_{6}Si_{2}O_{7}\left(D\right)$	620 (calc) ^e , 631 (calc) ^c , 638 (calc) ^g	n(Si-O), d(Si-O-Si)
H ₆ SiAlO ₇ ¹⁻ (D)	585 (calc) ^g	n(T ^k -O), d(Si-O-Al)
H ₄ SiAlO ₇ ³⁻ (D)	574 (exp) ^d	n(T-O), d(Si-O-Al)
$H_6Si_3O_9(3R)$	629 (calc) ^e	n(Si-O-Si)
$H_{6}Si_{2}AlO_{9}^{1-}(3R)$	574 (calc) ^h	n (T-O-T)
$H_{8}Si_{4}O_{12}\left(4R\right)$	490 (calc) ^h	n(Si-O-Si)
$H_8Si_3AlO_{12}^{1-}(4R)$	488 (calc) ^h	n(T-O-T)
Al(OH) ₄ ¹⁻	616 (calc) ⁱ , 620 (exp) ^d	n(Al-O)
KAl(OH) ₄	619 (calc) ^f	n(Al-O)
KH ₂ AlO ₃	691 (calc) ^f	n(Al-O)
Al(OH) ₃ H ₂ O	438 (calc) ⁱ	n(Al-OH ₂)
КОН	361 (calc) ^f	d(K-O-H)
USGS		

Wanjun Lu China Univ. of Geosci. Zhiyan Pan

Zhejiang Univ.

of Tech.

Xiaochun Xu Hefei Univ. of Tech.

Jan. 16, 2008

at USGS

Synthetic Fluid Inclusions in Quartz (Sterner & Bodnar, 1984)

- Pre-fractured quartz core or prism, together with sample fluid and silica powder, were sealed in a precious-metal capsule.
- The fractures in quartz were healed at a fixed P-T condition in a pressure vessel and captured sample fluid as inclusions.
- To heal the fractures requires high T (> 300 °C) and time (days and weeks).

Lin (2005)

- Synthesized CH₄-H₂O fluid inclusions in quartz in Pt capsules at 300 to 700 °C and 1, 3, and 5 kbars
- $Al_4C_3 + 12 H_2O = 3 CH_4 + 4 Al(OH)_3$
- All inclusions formed at and above 600 °C contain CO₂
 CH₄+ H₂O = CO₂ + H₂

Fused Silica Capillary Tube

Round-sectioned tube

Square-sectioned tube

Polymicro Technologies, LLC (www.polymicro.com).

Chou, Burruss, Lu (2005) Chapter 24 in Advances in High-Pressure Technology for Geophysical Applications

Raman scattered light (upward)

- G-2 High-P gauge S-1 & S-2 Syringes 1 to 16 Pressure valves
- T-2 High pressure fluid tank
- PG Pressure generator

Raman Spectra for CH₄ in Different Phases

Chou et al. (2000) PNAS, v. 97, 13484-13487

Diffusion of Methane in Water

≥USGS

WORLD GAS HYDRATE

Keith Kvenvolden

Growth of methane hydrate in 2 wt% Na₂SO₄ aqueous solution near room temperature

T dropped from ~23°C to ~22°C in one hour

Sample loading system for a capillary capsule

Room T (50 μm ID) Methane Hydrate

Smackover Oil (50 µm ID)

 CO_2 - H_2O

Cracking of octadecane (C₁₈H₃₈) with various densities at 350, 375, and 400 °C

- Our understanding of the reaction pathways and decomposition of organic compounds in the presence of water is limited.
 - Raman spectroscopic analysis for the following reactions at 206 °C for 41 hours:

 $- \operatorname{CH}_{4} + \operatorname{H}_{2}\operatorname{O} = \operatorname{CH}_{3}\operatorname{OH} + \operatorname{H}_{2}$ $- \operatorname{C}_{2}\operatorname{H}_{6} + \operatorname{H}_{2}\operatorname{O} = \operatorname{C}_{2}\operatorname{H}_{5}\operatorname{OH} + \operatorname{H}_{2}$ $- \operatorname{C}_{2}\operatorname{H}_{6} + 2 \operatorname{H}_{2}\operatorname{O} = \operatorname{CH}_{3}\operatorname{CO}_{2}\operatorname{H} + 3 \operatorname{H}_{2}$

Stretching frenquency of water dissolved in CO₂ at 32 °C as a function of CO₂ density

Berkesi et al. (2009)

Intensity

USGS

Uranyl chloride complexes in LiCl solution (1.5 molal) at 200 °C at vapor satrated (Dargent et al., 2012)

Hydrolysis of Polycarbonate in sub-critical water (280 °C) Pan, Chou & Burruss (Green Chem., 2009)

INSTEC Heating-Cooling Stage

Linkam 500 Capillary Pressure Stage

Linkam 500 Capillary Pressure Stage

- 7: Capillary sample holder
- 8: Capillary movement mechanism
- 9: Silver block heater & cover
- **10: Pt sensor protection plate**
- 11: 16 mm glass cover slip

1: Qtz sample carrier for FSCC (25 mm movement) 2: Silver cover

> Linkam 500 Capillary Pressure Stage

Summary

- Optical cells with fused silica windows, such as HPOC and FSCC, were designed for experiments at pressures up to 100 MPa and temperatures up to 600 °C, such as the *P-T* conditions of sedimentary basins, hydrothermal systems, and low-grade metamorphism.
- These types of cells are particularly suitable for the study of organic compounds and also for the systems containing S.

Summary

- When compared with the conventional synthetic fluid inclusion method, in which fluid inclusions were formed by healing fractures in quartz chips at elevated *P-T* conditions, the new FSCC method has the following advantages: (1) simple; (2) large and uniform inclusions can be formed; (3) suitable for the studies of organic material and/or S with/without water, and (5) allowing redox control when needed, especially for TSR experiments.
- The HPOC & FSCC have a great potential for studying geologic fluids at various *P-T* conditions, as demonstrated by many examples.

