
RAMAN SPECTROSCOPY OF GASES

Jean Dubessy UMR G2R-CNRS Nancy (France)

- real-time monitoring of anaesthetic and respiratory gas mixtures during surgery
- process gas analysis
- environmental gas analysis, industrial gas emission monitoring
- gas seeping in sea floor
- palaeofluid analysis contained in fluid inclusions

 Methane only identified component that has been in the spectra. Other higher hydrocarbons may be present, they are not in high enough concentrations to be detected by Raman analyses. GC analysis on shore verified that methane is present at ~97%.

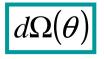
2) Brunsgaard Hansen et al. [2002]: pressure (density) of a methane mixture from the ratio of the 3020 (nu3) and 3070 cm-1 (2nu2) bands]: 0.67 @ 1582 m (~16.1 MPa); 1.75 @ 250 m (~2.6 MPa).

RAMAN INTENSITY OF GASES

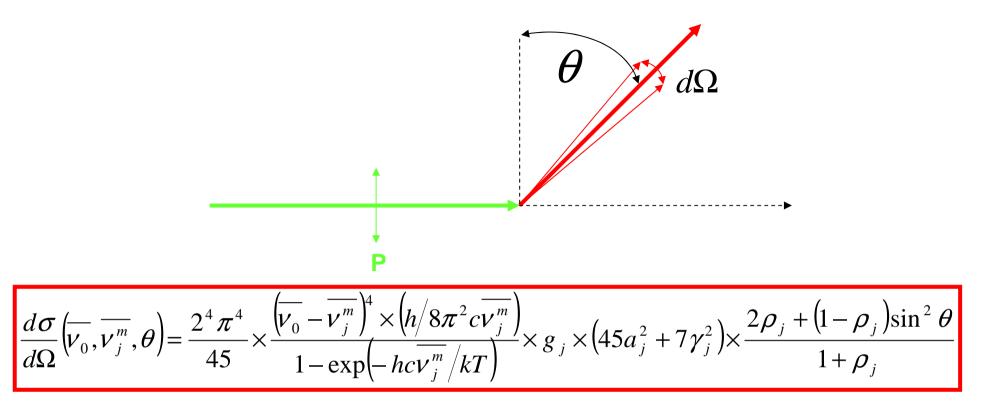
the number of Raman photons vibrational mode j, with a wavenumber , V_j

$$dP_{j,m}^{Raman}\left(\overline{\nu_0},\overline{\nu_j^g},\theta\right)$$

gas *m* excited with a laser radiation at V_0


$$dP_{j,m}^{Raman}\left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\theta\right) = \frac{P^{laser}\left(\overline{\nu_{0}}\right)}{A} \times \frac{d\sigma}{d\Omega}\left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\theta\right) \times d\Omega(\theta) \times N_{m}$$

 $P^{laser}(v_0)$ the number of photons delivered by the laser incoming on the gas sample


A: excited area of the sample by the laser beam

$$\frac{d\sigma}{d\Omega}\left(\overline{\nu_0},\overline{\nu_j^m},\theta\right)$$

(in cm²/sr⁻¹) the differential Raman scattering cross-section of the vibrational mode *j* into a direction defined by angle θ between the direction of observation without polarization analyzer and the polarization vector of the laser

(in sr) is the acceptance solid angle of the collection of Raman photons scattered by the sample in the direction of observation number of molecules in the irradiated volume seen by the spectrometer

are the invariants of the polarizability tensor derived with respect to the normal coordinate of the considered vibration, the linear average and the anisotropy respectively

 ρ_j depolarization ratio, a number without dimension, of the considered Raman band

Relative differential Raman scattering cross-section

- Why ? Absolute intensity measurements very difficult to carry out.
- Consequences: 1) concentration unit not in mole / (unit volume), but in mole fraction
 - 2) Molar density not deduced directly from intensity measurements
 - 3) use of a referennce gas: N₂ (chemical inertia, abundant)

$$\frac{d\sigma}{d\Omega}\left(\overline{\nu_0}, \overline{\nu_j^g}, \theta\right) = (5.05 \pm 0.1) \times 10^{-48} \times \left(\overline{\nu_0} - 2331\right)^4 \text{ cm}^6.\text{sr}^{-1}$$

• Differential Raman scattering cross-section with respect to N₂

$$\frac{\frac{d\sigma}{d\Omega}\left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\theta\right)}{\frac{d\sigma}{d\Omega}\left(\overline{\nu_{0}},\overline{\nu_{Q}^{N_{2}}},\theta\right)} = \frac{\left(\overline{\nu_{0}}-\overline{\nu_{j}^{m}}\right)^{4}}{\left(\overline{\nu_{0}}-\overline{\nu_{Q}^{N_{2}}}\right)^{4}} \times \frac{\overline{\nu_{Q}^{N_{2}}}}{\nu_{j}^{m}} \times \frac{1-\exp\left(-hc\overline{\nu_{Q}^{N_{2}}}/kT\right)}{1-\exp\left(-hc\overline{\nu_{j}^{m}}/kT\right)} \times \frac{g_{j}\times\left(45a_{j}^{2}+7\gamma_{j}^{2}\right)}{\left(45\left(a_{Q}^{N_{2}}\right)^{2}+7\left(\gamma_{Q}^{N_{2}}\right)_{j}^{2}\right)}$$

Schrötter and Klöckner (1979) neglects the term

$$1 - \exp\left(-hc\overline{v_Q^{N_2}}/kT\right)$$

Relative Raman scattering cross-section

Collection angle defined by the planar semi-aperture angle of the microscope

$$\sigma\left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\Omega_{0}\right) = \frac{2^{4}\pi^{4}}{45} \times \frac{\left(\overline{\nu_{0}}-\overline{\nu_{j}^{m}}\right)^{4} \times \left(h/8\pi^{2}c\overline{\nu_{j}^{m}}\right)}{1-\exp\left(-hc\overline{\nu_{j}^{m}}/kT\right)} \times g_{j} \times \left(45a_{j}^{2}+7\gamma_{j}^{2}\right) \times f(\theta)$$

Extension to the relative Raman scattering cross-section in backcattering geometry using a high N.A. objective

$$\sigma^{*}\left(\overline{v_{0}},\overline{v_{j}^{m}}\right) = \frac{\left(\overline{v_{0}}-\overline{v_{j}^{m}}\right)^{4}}{\left(\overline{v_{0}}-\overline{v_{Q}^{N_{2}}}\right)^{4}} \times \frac{\overline{v_{Q}^{N_{2}}}}{\overline{v_{j}^{m}}} \times \frac{1-\exp\left(-hc\overline{v_{Q}^{N_{2}}}/kT\right)}{1-\exp\left(-hc\overline{v_{j}^{m}}/kT\right)} \times \frac{g_{j}\times\left(45a_{j}^{2}+7\gamma_{j}^{2}\right)}{g_{Q}^{N_{2}}\times\left(45\left(a_{Q}^{N_{2}}\right)^{2}+7\left(\gamma_{Q}^{N_{2}}\right)^{2}\right)\right)}$$
$$\sigma\left(\overline{v_{0}},\overline{v_{j}^{m}},\Omega_{0}\right) = \sigma^{*}\left(\overline{v_{0}},\overline{v_{j}^{m}}\right) \times \frac{d\sigma}{d\Omega}\left(\overline{v_{0}},\overline{v_{Q}^{N_{2}}},\theta\right)$$
$$P_{j,m}^{Raman}\left(\overline{v_{0}},\overline{v_{j}^{m}},\Omega_{0}\right) = \frac{P^{laser}\left(\overline{v_{0}}\right)}{A} \times \sigma^{*}\left(\overline{v_{0}},\overline{v_{j}^{m}}\right) \times \frac{d\sigma}{d\Omega}\left(\overline{v_{0}},\overline{v_{Q}^{N_{2}}},\theta\right) \times N_{m}$$

Calculation composition

Mole fraction
$$x_m = N_m / \sum_{i=1}^{i=n} N_i$$

$$x_m = \frac{P_{j,m}^{Raman} / \sigma * \left(\overline{v_0}, \overline{v_j^m}\right)}{\sum_{i=1}^{i=n} \left[P_{j,i}^{Raman} / \sigma * \left(\overline{v_0}, \overline{v_j^i}\right) \right]}$$

Experimental intensities and Raman photons $I_{j,m}^{Raman} = P_{j,m}^{Raman} \times \xi(\overline{\nu_0}, \overline{\nu_j^m}, \Omega_0) \times t_m$

 $(\overline{\nu_0}, \nu_j^m, \Omega_0)$ intensity instrumental function at $\overline{\nu_0} - \overline{\nu_j^m}$

$$x_{m} = \frac{I_{j,m}^{Raman} / \left[\sigma * \left(\overline{\nu_{0}}, \overline{\nu_{j}^{m}} \right) \times \xi \left(\overline{\nu_{0}}, \overline{\nu_{j}^{m}}, \Omega_{0} \right) \times t_{m} \right]}{\sum_{i=1}^{i=N} \left[I_{j,i}^{Raman,} / \left[\sigma * \left(\overline{\nu_{0}}, \overline{\nu_{j}^{i}} \right) \right] \times \xi \left(\overline{\nu_{0}}, \overline{\nu_{j}^{i}}, \Omega_{0} \right) \times t_{i} \right]}$$

gas	CO ₂	CO ₂	СО	H ₂ S	SO ₂	CH ₄	H ₂	H ₂ O
(cm ⁻¹)	1285	1388	2143	2611	1151	2917	4155	3657
()	0.99	1.5	0.99	6.81	5.51	8.7	2.2	2.51

Detection limit with a microscope

$$P_{j,m}^{Raman}\left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\Omega_{0}\right) = \frac{P^{laser}\left(\overline{\nu_{0}}\right)}{A} \times \sigma * \left(\overline{\nu_{0}},\overline{\nu_{j}^{m}}\right) \times \frac{d\sigma}{d\Omega}\left(\overline{\nu_{0}},\overline{\nu_{Q}^{N_{2}}},\theta\right) \times N_{m}$$

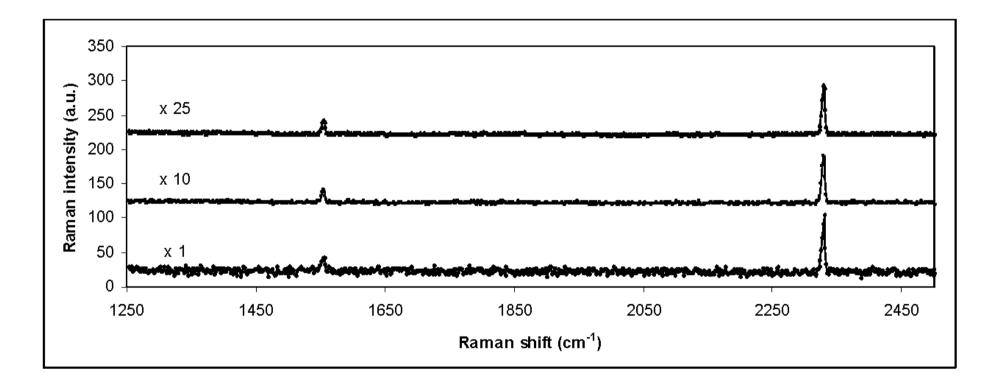
$$N_{m} = d_{m} \times A \times L \qquad \text{microscope} \qquad L = \delta_{z} = 4\lambda/(N.A.)^{2} \approx 4\lambda = 2\,\mu\,\mathrm{m}$$

$$P_{j,m}^{Raman} = P^{laser}\left(\overline{\nu_{0}}\right) \times \sigma * \left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\Omega_{0}\right) \times \frac{d\sigma}{d\Omega}\left(\overline{\nu_{0}},\overline{\nu_{j}^{m}},\theta\right) \times d_{m} \times \delta_{z}$$

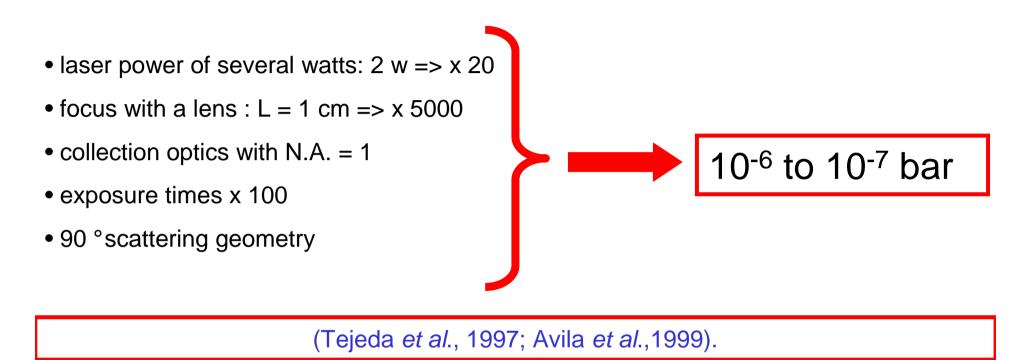
For a 100 mW laser at 514.5 nm, the number of photons is $P^{laser}(\overline{v_0}) = 2.5 \times 10^{17} \text{ photons.s}^{-1}$

$$\frac{d\sigma}{d\Omega} \left(\overline{v_0}, \overline{v_j^{N_2}}, \theta \right) = 44 \times 10^{-32} \text{ cm}^2 \text{ sr}^{-1}$$

For 1 bar pressure $d_m = N_{Av} / 22400 = 2.7 \times 10^{19} \text{ molecules.cm}^{-3}$

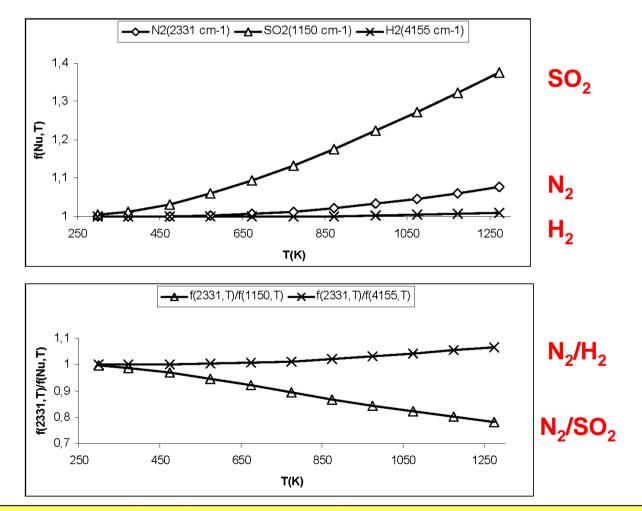

Number of Raman photons.s⁻¹ is : $P_{j,m}^{Raman} = 300 \text{ photons.s}^{-1}$

Efficiency of the whole Raman system = 25 % $P_{j,m}^{Raman}$ (detector) = 75

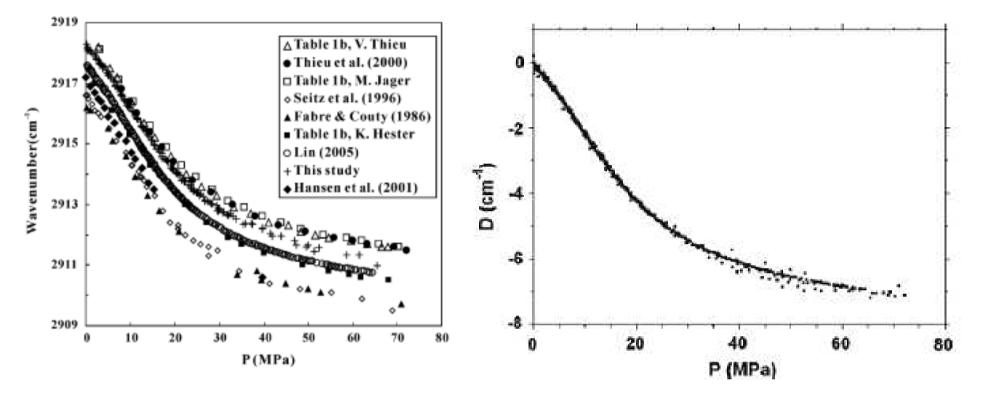

Near the detection limit

Detection limit with a microspectrometer

100 mW, t = 1s, objective x 100



Detection limit with a conventional spectrometer



Raman spectroscopy can be used for monitoring gas composition

• Each gas RSCS:
$$\left[\frac{1}{1 - \exp\left(-\frac{hc\overline{v_j^g}}{kT}\right)} \right] \longrightarrow \sigma^* \left(\overline{v_0}, \overline{v_j^m} \right) \approx \frac{1 - \exp\left(-\frac{hc\overline{v_2^m}}{kT}\right)}{1 - \exp\left(-\frac{hc\overline{v_j^m}}{kT}\right)}$$

Effect of pressure on peak position

Lu et al., GCA, 2007,71, 3961-3978

Several other studies on the pressure effect on CO₂, N₂, H₂

CH₄-N₂ mixture vs composition

Effect of pressure and composition on peak position

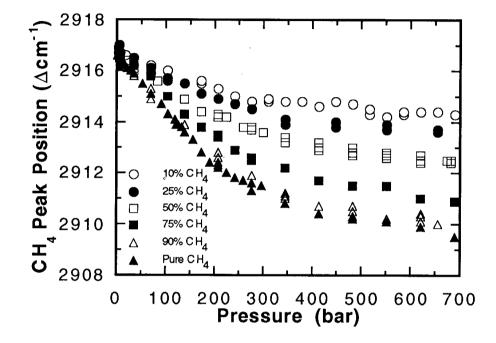


Fig. 3. CH₄ peak position (ν_1) versus total gas pressure for pure CH₄ and various CH₄–N₂ mixtures (mole percent).

Seitz, J.C., Pasteris, J.D., & Chou, I.-M. (1993) American Journal of Science, 293, 297–321.

Variation of RSCS with pressure

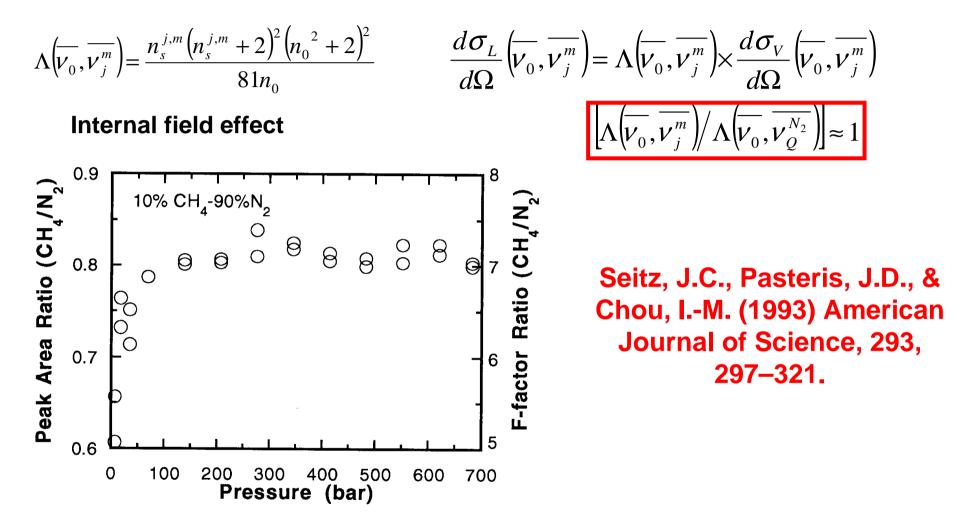


Fig. 9. Plot of data for 10 percent CH_4 (90 percent N_2) mixture; left vertical scale indicates raw peak area ratio (CH_4/N_2), and right vertical scale indicates F-factor ratio (CH_4/N_2) for the same data. F-factor ratio, related to peak areas, was calculated using eq (3) (see text).